Trous noirs (article du forum les émanants)
Voyage dans un trou noir
Voyage dans un trou noir
Voyage dans un trou noir (article vu dans science un blog que j'aime).
En astrophysique, un trou noir est un corps extrêmement dense dont le champ gravitationnel est si intense qu’il empêche toute forme de matière ou de rayonnement de s’en échapper (à l'exception notable de la radiation de Hawking, cf. plus bas). De tels objets n’émettent donc pas de lumière et sont alors perçus noirs. Les trous noirs sont décrits par la théorie de la relativité générale. Ils ne sont pas directement observables mais plusieurs techniques d’observation indirecte dans différentes longueurs d’ondes ont été mises au point et permettent d’étudier les phénomènes qu’ils induisent sur leur environnement. En particulier, la matière qui est happée par un trou noir est chauffée à des températures considérables avant d'être engloutie et émet de ce fait une quantité importante de rayons X. Ainsi, même si un trou noir n'émet pas lui-même de rayonnement, il peut néanmoins être détectable par son action sur son environnement. L'existence des trous noirs est une certitude pour la quasi-totalité de la communauté scientifique concernée (astrophysiciens et physiciens théoriciens).
Présentation et terminologie
Un trou noir possède une masse donnée, concentrée en un point appelé singularité gravitationnelle. Cette masse permet de définir une sphère appelée horizon du trou noir, centrée sur la singularité et dont le rayon est une limite maximale en deçà de laquelle le trou noir empêche tout rayonnement de s’échapper. Cette sphère représente en quelque sorte l’extension spatiale du trou noir. C'est ainsi que le terme « trou » est inapproprié, on devrait plutôt parler de « bulle noire » pour conceptualiser concrètement sa forme physique réelle tridimensionnelle dans l'espace. Pour un trou noir de masse égale à la masse du Soleil, son rayon vaut environ 3 kilomètres. À une distance interstellaire (en millions de kilomètres), un trou noir n’exerce pas plus d’attraction que n’importe quel autre corps de même masse ; il ne s’agit donc pas d’un « aspirateur » irrésistible. Par exemple, si le Soleil se trouvait remplacé par un trou noir de même masse, les orbites de ses planètes resteraient inchangées.
Il existe plusieurs sortes de trous noirs. Lorsqu’ils se forment à la suite de l’effondrement gravitationnel d’une étoile, on parle de trou noir stellaire. Quand on les trouve au centre des galaxies, ils ont une masse pouvant aller jusqu’à plusieurs milliards de masses solaires et on parle alors de trou noir supermassif (ou trou noir galactique). Entre ces deux échelles de masse, on pense qu’il existe des trous noirs intermédiaires avec une masse de quelques milliers de masses solaires. Des trous noirs de masse bien plus faible, qui auraient été formés au début de l’histoire de l’univers, au Big Bang, sont aussi envisagés, et sont appelés trous noirs primordiaux. Leur existence n’est, à l’heure actuelle, pas confirmée.
Il est impossible d’observer directement un trou noir. Il est cependant possible de déduire sa présence par son action gravitationnelle sur son environnement, soit par les effets sur les trajectoires des étoiles proches, soit au sein des microquasars et des noyaux actifs de galaxies, où de la matière, située à proximité, tombant sur le trou noir va se trouver considérablement chauffée et émettre un fort rayonnement X. Les observations permettent ainsi de déceler l’existence d’objets massifs et de très petite taille. Les seuls objets que ces observations impliquent et qui sont compatibles dans le cadre de la relativité générale sont les trous noirs.
Historique
Le concept de trou noir a émergé à la fin du XVIIIe siècle dans le cadre de la gravitation universelle d’Isaac Newton. La question était de savoir s’il existait des objets dont la masse était suffisamment grande pour que leur vitesse de libération soit plus grande que la vitesse de la lumière. Cependant, ce n’est qu’au début duXXe siècle et avec l’avènement de la relativité générale d’Albert Einstein que le concept de trou noir devient plus qu’une curiosité. En effet, peu après la publication des travaux d’Einstein, une solution de l’équation d’Einstein impliquant l’existence d’un trou noir central est publiée par Karl Schwarzschild. Les travaux fondamentaux sur les trous noirs remontent aux années 1960, précédant de peu les premières indications observationnelles solides en faveur de leur existence. La première « observation » , d’un objet contenant un trou noir fut celle de la source de rayons X Cygnus X-1 par le satellite Uhuru en 1971. Le terme de « trou noir » a émergé, dans le courant des années 1960, par l’intermédiaire du physicien américain Kip Thorne. Auparavant, on utilisait les termes de « corps de Schwarzschild » ou d’« astre occlus ». Le terme de « trou noir » a rencontré des réticences dans certaines communautés linguistiques, notamment francophones et russophones, qui le jugeaient quelque peu inconvenant.
Propriétés
Un trou noir est un objet astrophysique comme un autre. Il se caractérise par le fait qu’il est très difficile à observer directement (voir ci-dessous), et que sa région centrale ne peut être décrite de façon satisfaisante par les théories physiques en leur état du début du XXIe siècle, car elle abrite une singularité gravitationnelle. Cette dernière ne peut être décrite que dans le cadre d’une théorie de la gravitation quantique, manquante à ce jour. Par contre, on sait parfaitement décrire les conditions physiques qui règnent dans son voisinage immédiat, de même que son influence sur son environnement, ce qui permet de les détecter par diverses méthodes indirectes.
Par ailleurs, les trous noirs sont étonnants en ce qu’ils sont décrits par un très petit nombre de paramètres. En effet, leur description, dans l’univers dans lequel nous vivons, ne dépend que de trois paramètres : la masse, la charge électrique et le moment cinétique. Tous les autres paramètres du trou noir (par exemple sa taille ou sa forme) sont fixés par ceux-là. Par comparaison, la description d’une planète fait intervenir des centaines de paramètres (composition chimique, différenciation de ses éléments, convection, atmosphère, etc.). La raison pour laquelle un trou noir n’est décrit que par ces trois paramètres est connue depuis 1967 : c’est le théorème de calvitie démontré par Werner Israel. Celui-ci explique que les seules interactions fondamentales à longue portée étant la gravitation et l’électromagnétisme, les seules propriétés mesurables des trous noirs sont données par les paramètres décrivant ces interactions, à savoir la masse, le moment cinétique et la charge électrique.
Pour un trou noir, la masse et la charge électrique sont des propriétés habituelles que décrit la physique classique (c'est-à-dire non-relativiste) : le trou noir possède un champ gravitationnel proportionnel à sa masse et un champ électrique proportionnel à sa charge. L'influence du moment cinétique est par contre spécifique à la relativité générale. Celle-là stipule en effet qu'un corps en rotation va avoir tendance à « entraîner » l'espace-temps dans son voisinage. Ce phénomène, non encore observé à l'heure actuelle dans le système solaire en raison de son extrême faiblesse pour des astres non compacts, est connu sous le nom d'effet Lense-Thirring (aussi appelé frame dragging, en anglais), Il prend une amplitude considérable au voisinage d'un trou noir en rotation, au point qu'un observateur situé dans son voisinage immédiat serait inévitablement entraîné dans le sens de rotation du trou noir. La région où ceci se produit est appelée ergorégion.
La masse d’un trou noir galactique correspond en général à environ un millième de la masse de la matière présente dans le bulbe central.
Quatre types théoriques possibles…
Un trou noir possède toujours une masse non nulle. En revanche, ses deux autres caractéristiques, à savoir le moment cinétique (rotation) et la charge électrique, peuvent en principe prendre des valeurs nulles (c’est-à-dire égales à zéro) ou non nulles. La combinaison de ces états permet de définir quatre types de trous noirs.
Quand la charge électrique et le moment cinétique sont nuls, on parle de trou noir de Schwarzschild, du nom de Karl Schwarzschild qui, le premier, a mis en évidence ces objets comme solutions des équations de la relativité générale (les équations d'Einstein), en 1916.
Quand la charge électrique est non nulle et le moment cinétique nul, on parle de trou noir de Reissner-Nordström. Ces trous noirs ne présentent pas d’intérêt astrophysique notable, car aucun processus connu ne permet de fabriquer un objet compact conservant durablement une charge électrique significative ; celle-ci se dissipe normalement rapidement par absorption de charges électriques opposées prises à son environnement. Un trou noir de Reissner-Nordström est donc un objet théorique très improbable dans la nature.
Si le trou noir possède un moment cinétique (c’est-à-dire qu’il est en rotation sur lui-même) mais n’a pas de charge électrique, on parle de trou noir de Kerr, du nom du mathématicien néo-zélandais Roy Kerr qui a trouvé la formule décrivant ces objets en 1963. Contrairement aux trous noirs de Reissner-Nordström et de Schwarzschild, les trous noirs de Kerr présentent un intérêt astrophysique considérable, car les modèles de formation et d’évolution des trous noirs indiquent que ceux-ci ont tendance à absorber la matière environnante par l’intermédiaire d’un disque d'accrétion dans lequel la matière tombe en spiralant toujours dans le même sens dans le trou noir. Ainsi, la matière communique du moment cinétique au trou noir qui l’engloutit. Les trous noirs de Kerr sont donc les seuls que l’on s’attend réellement à rencontrer en astronomie. Cependant, il reste possible que des trous noirs à moment cinétique très faible, s’apparentant en pratique à des trous noirs de Schwarzschild, existent.
La version électriquement chargée du trou noir de Kerr, dotée comme lui d’une rotation, est connue sous le nom de trou noir de Kerr-Newman et ne présente comme le trou noir de Reissner-Nordström ou celui de Schwarzschild que peu d’intérêt astrophysique eu égard à sa très faible probabilité.
… Et une multitude d’autres
D’un point de vue théorique, il peut exister une multitude d’autres types de trous noirs avec des propriétés différentes. Par exemple, il existe un analogue du trou noir de Reissner-Nordström, mais en remplaçant la charge électrique par une charge magnétique, c’est-à-dire créée par des monopôles magnétiques, dont l’existence reste extrêmement hypothétique à ce jour. On peut de même généraliser le concept de trou noir à des espaces comprenant plus de trois dimensions. Ceci permet d’exhiber des types de trous noirs ayant des propriétés parfois différentes de celles des trous noirs présentés ci-dessus.
Horizon des événements
La zone sphérique qui délimite la région d’où lumière et matière ne peuvent s’échapper, est appelée « horizon des événements ». On parle parfois de « surface » du trou noir, quoique le terme soit quelque peu impropre (il ne s’agit pas d’une surface solide ou gazeuse comme la surface d’une planète ou d’une étoile). Il ne s’agit pas d’une région qui présente des caractéristiques particulières : un observateur qui franchirait l’horizon ne ressentirait rien de spécial à ce moment-là (voir ci-dessous). Par contre, il se rendrait compte qu’il ne peut plus s’échapper de cette région s’il essayait de faire demi-tour. C'est une sorte de point de non retour. En substance, c’est une situation qui est un peu analogue à celle d’un baigneur qui s’éloignerait de la côte. Si par exemple le baigneur ne peut nager que deux kilomètres, il ne ressentira rien s’il s’éloigne à plus d’un kilomètre de la côte. Par contre, s’il fait demi-tour, il se rendra compte qu’il n’a pas assez d’énergie pour atteindre la rive.
En revanche, un observateur situé au voisinage de l’horizon remarquera que le temps s’écoule différemment pour lui et pour un observateur situé loin du trou noir. Si ce dernier lui envoie des signaux lumineux à intervalles réguliers (par exemple une seconde), alors l’observateur proche du trou noir recevra des signaux plus énergétiques (la fréquence des signaux lumineux sera plus élevée, conséquence du décalage vers le bleu subi par la lumière qui tombe vers le trou noir), et les intervalles de temps séparant deux signaux consécutifs seront plus rapprochés (moins d’une seconde, donc). Cet observateur aura donc l’impression que le temps s’écoule plus vite pour son confrère resté loin du trou noir que pour lui. À l’inverse, l’observateur resté loin du trou noir verra son collègue évoluer de plus en plus lentement, le temps chez celui-ci donnant l’impression de s’écouler plus lentement.
Si l’observateur distant voit un objet tomber dans un trou noir, les deux phénomènes de dilatation du temps et de décalage vers le rouge vont se combiner. Les éventuels signaux émis par l’objet seront de plus en plus rouges, de moins en moins lumineux (la lumière émise perd de plus en plus d’énergie avant d’arriver à l’observateur lointain), et de plus en plus espacés. En pratique, le nombre de photons reçus par l’observateur distant va décroître très rapidement, jusqu’à devenir nul : à ce moment-là l’objet en train de chuter dans le trou noir est devenu invisible. Même si l’observateur distant tente d’approcher l’horizon en vue de récupérer l’objet qu’il a eu l’impression de voir s’arrêter juste avant l’horizon, celui-ci demeurera invisible[12].
Pour un observateur s’approchant d’une singularité, ce sont les effets de marée qui vont devenir importants. Ces effets, qui déterminent les déformations d’un objet (le corps d’un astronaute, par exemple) du fait des hétérogénéités du champ gravitationnel, seront inéluctablement ressentis par un observateur s’approchant de trop près d’un trou noir ou d’une singularité. La région où ces effets de marée deviennent importants est entièrement située dans l’horizon pour les trous noirs supermassifs, mais empiète notablement hors de l’horizon pour des trous noirs stellaires[13]. Ainsi, un observateur s’approchant d’un trou noir stellaire serait déchiqueté avant de passer l’horizon, alors que le même observateur qui s’approcherait d’un trou noir supermassif passerait l’horizon sans encombre. Il serait tout de même inéluctablement détruit par les effets de marée en s'approchant de la singularité.
Singularité
Au centre d’un trou noir se situe une région dans laquelle le champ gravitationnel et les distorsions de l’espace (on parle plutôt de courbure de l’espace) deviennent infinis. Cette région s’appelle une singularité gravitationnelle. La description de cette région est délicate dans le cadre de la relativité générale puisque celle-ci ne peut décrire des régions où la courbure devient infinie.
De plus, la relativité générale est une théorie qui ne peut pas incorporer en général des effets gravitationnels d’origine quantique. Or quand la courbure tend vers l’infini, on peut montrer que celle-ci est nécessairement sujette à des effets de nature quantique. Par conséquent, seule une théorie de la gravitation incorporant tous les effets quantiques (on parle alors de gravitation quantique) est en mesure de décrire correctement les singularités gravitationnelles.
La description d’une singularité gravitationnelle est donc pour l’heure problématique. Néanmoins, tant que celle-ci est située à l’intérieur d’un trou noir, elle ne peut influencer l’extérieur d’un trou noir, de la même façon que de la matière située à l’intérieur d’un trou noir ne peut en ressortir. Ainsi, aussi mystérieuses que soient les singularités gravitationnelles, notre incapacité à les décrire, signe de l’existence de limitations de la relativité générale à décrire tous les phénomènes gravitationnels, n’empêche pas la description des trous noirs pour la partie située de notre côté de l’horizon des événements.
Formation des trous noirs
La possibilité de l’existence des trous noirs n’est pas une conséquence exclusive de la relativité générale : la quasi-totalité des autres théories de la gravitation physiquement réalistes permet également leur existence. La relativité générale, à l’instar de la plupart de ces autres théories de la gravité, non seulement prédit que les trous noirs peuvent exister, mais aussi qu’ils seront formés partout où suffisamment de matière peut être compactée dans une région de l’espace. Par exemple, si l’on compressait le Soleil dans une sphère d’environ trois kilomètres de rayon (soit à peu près quatre millionièmes de sa taille), il deviendrait un trou noir. Si la Terre était compressée dans un volume de quelques centimètres cube, elle deviendrait également un trou noir.
Pour l’astrophysique, un trou noir peut être considéré comme le stade ultime d’un effondrement gravitationnel. Les deux stades de la matière qui, en termes de compacité, précèdent l’état de trou noir, sont ceux atteints par exemple par les naines blanches et les étoiles à neutrons. Dans le premier cas, c’est la pression de dégénérescence des électrons qui maintient la naine blanche dans un état d’équilibre face à la gravité. Dans le second, il ne s'agit pas de la pression de dégénérescence des nucléons, mais de l'interaction forte qui maintient l’équilibre. Un trou noir ne peut se former suite à l'effondrement d'une naine blanche : celle-ci, en s'effondrant initie des réactions nucléaires qui forment des nucléons plus lourds que ceux qui la composent. Ce faisant, le dégagement d'énergie qui en résulte est suffisant pour disloquer complètement la naine blanche, qui explose en supernova dite thermonucléaire (ou de type Ia).
Un trou noir se forme lorsque la force de gravité est suffisamment grande pour dépasser l’effet de la pression, chose qui se produit quand l'astre progéniteur dépasse une certaine masse critique. Dans ce cas, plus aucune force connue ne permet de maintenir l’équilibre, et l’objet en question s’effondre complètement. En pratique, plusieurs cas de figures sont possibles : soit une étoile à neutrons accrète de la matière issue d'une autre étoile, jusqu'à atteindre une masse critique, soit elle fusionne avec une autre étoile à neutron (phénomène a priori beaucoup plus rare), soit le cœur d'une étoile massive s'effondre directement en trou noir.
L’hypothèse de l’existence d’un état plus compact que celui d’étoile à neutrons a été proposée dans le courant des années 1980 ; ce serait celui des étoiles à quarks aussi appelées étoiles étranges en raison du nom donné pour des raisons historiques à certains des quarks constituant l’objet, appelés « quarks étranges ». Des indications d’une possible détection indirecte de tels astres ont été obtenues depuis le courant des années 1990, sans trancher pour autant définitivement la question, mais cela ne change rien au fait qu'au-delà d'une certaine masse ce type d'astre finit par s'effondrer en trou noir, seule la valeur de la masse limite change.
En 2006, on distingue quatre grandes classes de trous noirs en fonction de leur masse : les trous noirs stellaires, supermassifs, intermédiaires et primordiaux (ou micro trous noirs). L’existence voire l’abondance de chaque type de trou noir est directement liée à la possibilité de leur formation.
Trous noirs stellaires
Un trou noir de la masse du soleil aurait un diamètre de 2 kilomètres. Les trous noirs stellaires ont une masse d'au moins quelques masses solaires. Ils naissent à la suite de l’effondrement gravitationnel du résidu des étoiles massives (environ dix masses solaires et plus, initialement). En effet, lorsque la combustion par les réactions thermonucléaires dans le cœur de l’étoile massive se termine, faute de carburant, une supernova se produit. Cette dernière peut laisser derrière elle un cœur qui continue à s’effondrer rapidement.
En 1939, Robert Oppenheimer a montré que si ce cœur a une masse supérieure à une certaine limite (appelée limite d'Oppenheimer-Volkoff, et égale à environ 3,3 masses solaires), la force gravitationnelle l’emporte définitivement sur toutes les autres forces et un trou noir se forme.
L’effondrement vers un trou noir est susceptible d’émettre des ondes gravitationnelles, qui devraient être détectées dans un futur proche avec des instruments tels que le détecteur Virgo de Cascina en Italie, ou avec les deux interféromètres américains de LIGO. Les trous noirs stellaires sont aujourd’hui observés dans les binaires X et les microquasars et sont responsables parfois de l’apparition de jets tels que ceux observés dans certains noyaux actifs de galaxies.
Trous noirs supermassifs
Les trous noirs supermassifs ont une masse comprise entre quelques millions et quelques milliards de masses solaires. Ils se trouvent au centre des galaxies et leur présence provoque parfois l’apparition de jets et du rayonnement X. Les noyaux de galaxies qui sont ainsi plus lumineux qu’une simple superposition d’étoiles sont alors appelés noyaux actifs de galaxies.
Notre galaxie, la Voie lactée, contient un tel trou noir, ainsi qu’il a été démontré par l’observation des mouvements extrêmement rapides des étoiles proches du trou noir. En particulier, une étoile nommée S2 a pu être observée lors d’une révolution complète autour d’un objet sombre non détecté en moins de onze ans. L’orbite elliptique de cette étoile l’a amenée à moins de vingt unités astronomiques de cet objet (soit une distance de l’ordre de celle Uranus-Soleil), et la vitesse à laquelle l’orbite est parcourue permet d’assigner une masse d’environ 2,3 millions de masses solaires pour l’objet sombre autour duquel elle gravite. Aucun modèle autre que celui d’un trou noir ne permet de rendre compte d’une telle concentration de matière dans un volume aussi restreint.
Le télescope Chandra a également permis d’observer au centre de la galaxie NGC 6240 deux trous noirs supermassifs en orbite l’un autour de l’autre. La formation de tels géants est encore débattue, mais certains pensent qu’ils se sont formés très rapidement au début de l’univers.
Trous noirs intermédiaires
Les trous noirs intermédiaires sont des objets récemment découverts et ont une masse entre 100 et10 000 masses solaires. Dans les années 1970, les trous noirs de masse intermédiaire étaient supposés se former dans le cœur des amas globulaires mais aucune observation ne venait soutenir cette hypothèse. Des observations dans les années 2000 ont montré l’existence de sources de rayons X ultralumineuses (Ultra-luminous X-ray source en anglais, ou ULX). Ces sources ne sont apparemment pas associées au cœur des galaxies où l’on trouve les trous noirs supermassifs. De plus, la quantité de rayons X observée est trop importante pour être produite par un trou noir de 20 masses solaires, accrétant de la matière avec un taux égal à la limite d'Eddington (limite maximale pour un trou noir stellaire).
Trous noirs primordiaux
Les trous noirs primordiaux, aussi appelés micro trous noirs ou trous noirs quantiques, auraient une taille très petite. Ils se seraient formés durant le Big Bang (d’où l’appellation trou noir « primordial »), suite à l’effondrement gravitationnel de petites surdensités dans l’univers primordial. Dans les années 1970, les physiciens Stephen Hawking et Bernard Carr ont étudié un mécanisme de formation des trous noirs dans l’univers primordial. Ils avancèrent l’idée d’une profusion de mini-trous noirs, minuscules par rapport à ceux envisagés par la formation stellaire. La densité et la répartition en masse de ces trous noirs ne sont pas connues et dépendent essentiellement de la façon dont se produit une phase d’expansion rapide dans l’univers primordial, l’inflation cosmique. Ces trous noirs de faible masse émettent s’ils existent un rayonnement gamma qui pourrait éventuellement être détecté par des satellites comme INTEGRAL. La non détection de ce rayonnement permet de mettre des limites supérieures sur l’abondance et la répartition en masse de ces trous noirs.
Selon certains modèles de physique des hautes énergies, il pourrait être possible de créer des mini-trous noirs similaires en laboratoire, dans des accélérateurs de particules comme le LHC, installé près de Genève, en Suisse.
En 2005, Frans Pretorius est parvenu à simuler la fusion complète de deux trous noirs ; la phase finale de ce processus est plus simple qu'on l'imaginait et surtout plus courte : de l'ordre de la milliseconde.
Les deux seules classes de trous noirs pour lesquelles on dispose d’observations nombreuses (indirectes, mais de plus en plus précises, voir paragraphe suivant) sont les trous noirs stellaires et supermassifs. Le trou noir supermassif le plus proche est celui qui se trouve au centre de notre Galaxie à environ 8 kilo-parsecs.
Une des premières méthodes de détection d’un trou noir est la détermination de la masse des deux composantes d’une étoile binaire, à partir des paramètres orbitaux. On a ainsi observé des étoiles de faible masse avec un mouvement orbital très prononcé (amplitude de plusieurs dizaines de km/s), mais dont le compagnon est invisible. Le compagnon massif invisible peut généralement être interprété comme une étoile à neutrons ou un trou noir puisqu’une étoile normale avec une telle masse se verrait très facilement. La masse du compagnon (ou la fonction de masses, si l’angle d’inclinaison est inconnu) est alors comparée à la masse limite maximale des étoiles à neutrons (environ 3,3 masses solaires). Si elle dépasse cette limite, on considère que l’objet est un trou noir. Sinon, il peut être une naine blanche.
On considère également que certains trous noirs stellaires apparaissent lors des sursauts de rayons gamma (ou GRB, pour gamma-ray burst en anglais). En effet, ces derniers se formeraient via l’explosion d’une étoile massive (comme une étoile Wolf-Rayet) en supernova, et que dans certains cas (décrits par le modèle collapsar), un flash de rayons gamma est produit au moment où le trou noir se forme. Ainsi, un GRB[29]pourrait représenter le signal de la naissance d’un trou noir. Des trous noirs de plus faible masse peuvent aussi être formés par des supernovae classiques. Le rémanent de la supernova 1987A est soupçonné d’être un trou noir, par exemple.
Un deuxième phénomène directement relié à la présence d’un trou noir, cette fois pas seulement de type stellaire, mais aussi supermassif, est la présence de jets observés principalement dans le domaine des ondes radio. Ces jets résultent des changements de champ magnétique à grande échelle se produisant dans le disque d’accrétion du trou noir.
Vers l’observation directe ?
La petite taille d’un trou noir stellaire (quelques kilomètres) rend son observation directe impossible. En guise d’exemple, et même si la taille angulaire d'un trou noir est plus grande que celle d’un objet classique de même rayon, un trou noir d’une masse solaire et situé à un parsec (environ 3,26 années-lumière) aurait un diamètre angulaire de 0,1 micro seconde d'arc. Cependant, la situation est plus favorable pour un trou noir supermassif. En effet, la taille d’un trou noir est proportionnelle à sa masse. Le trou noir du centre galactique a une masse, bien estimée, d’environ 3,6 millions de masses solaires. Son rayon de Schwarzschild est donc d’environ 11 millions de kilomètres. La taille angulaire de ce trou noir, situé à environ 8,5 kiloparsecs est de l’ordre de 40 microsecondes d’arc. Cette résolution est inaccessible dans le domaine visible, mais est assez proche des limites actuellement atteignables en interférométrie radio. La technique de l’interférométrie radio, avec une sensibilité suffisante, est limitée en fréquence au domaine millimétrique. Un gain d’un ordre de grandeur en fréquence permettrait une résolution meilleure que la taille angulaire du trou noir. L’imagerie directe du trou noir du centre galactique est donc envisageable dans les années qui viennent. Le trou noir supermassif situé au centre de la galaxie M87 est environ 2 000 fois plus éloigné (18,7 Mpc), mais estimé près de 1 000 fois plus massif. Ce trou noir pourrait ainsi devenir le second trou noir imagé après celui de la Voie Lactée.
Exemples de trous noirs stellaires
Cygnus X-1, détecté en 1965, est le premier objet astrophysique connu contenant un trou noir. C’est un système binaire constitué d’un trou noir en rotation et d’une étoile géante.
Les systèmes binaires stellaires qui contiennent un trou noir avec un disque d’accrétion formant des jets sont appelés microquasars, en référence à leurs parents extragalactiques : les quasars. Les deux classes d’objets partagent en fait les mêmes processus physiques. Parmi les microquasars les plus étudiés, on notera GRS 1915+105, découvert en 1994 pour avoir des jets supraluminiques. Un autre cas de tels jets fut détecté dans le système GRO J1655-40. Mais sa distance est sujette à controverse et ses jets pourraient ne pas être supraluminiques. Notons aussi le microquasar très spécial SS 433, qui a des jets persistants en précession, et où la matière se déplace par paquets à des vitesses de quelques fractions de la vitesse de la lumière.
Exemples de trous noirs supermassifs
Les candidats trous noirs supermassifs ont premièrement été les noyaux actifs de galaxie et les quasars découverts par les radioastronomes dans les années 1960. Cependant, les observations les plus convaincantes de l’existence de trous noirs supermassifs sont celles des orbites des étoiles autour du centre galactique appelé Sagitarius A*. L’orbite de ces étoiles et les vitesses atteintes, ont permis aujourd’hui d’exclure tout autre type d’objet qu’un trou noir supermassif à cet endroit de la galaxie. Par la suite, des trous noirs supermassifs ont été détectés dans de nombreuses autres galaxies.
En février 2005, une étoile géante bleue, appelée SDSS J090745.0+024507 fut observée quittant notre galaxie avec une vitesse deux fois supérieure à la vitesse de libération de la Voie lactée, soit 0,0022 fois la vitesse de la lumière. Quand on remonte la trajectoire de cette étoile, on voit qu’elle croise le voisinage immédiat du centre galactique. Sa vitesse et sa trajectoire confortent donc également l’idée de la présence d’un trou noir supermassif à cet endroit dont l’influence gravitationnelle aurait provoqué l’éjection de cette étoile de la Voie Lactée.
En novembre 2004, une équipe d’astronomes a rapporté la découverte du premier trou noir de masse intermédiaire dans notre galaxie et orbitant à seulement trois années-lumière du centre galactique. Ce trou noir aurait une masse d’environ 1 300 masses solaires et se trouve dans un amas de seulement sept étoiles. Cet amas est probablement le résidu d’un amas massif d’étoiles qui a été dénudé par la présence du trou noir central[32]. Cette observation conforte l’idée que les trous noirs supermassifs grandissent en absorbant des étoiles et autres trous noirs, qui pourra être confirmée par l’observation directe des ondes gravitationnelles émises par ce processus, par l’intermédiaire de l’interféromètre spatial LISA.
En juin 2004, des astronomes ont trouvé un trou noir supermassif, appelé Q0906+6930, au centre d’une galaxie lointaine d’environ 12,7 milliards d’années-lumière, c’est-à-dire lorsque l’univers était encore très jeune[33]. Cette observation montre que la formation des trous noirs supermassifs dans les galaxies est un phénomène relativement rapide.
Trous noirs et trous de ver
La relativité générale indique qu’il existerait des configurations dans lesquelles deux trous noirs sont reliés l’un à l’autre. Une telle configuration est habituellement appelée trou de ver ou plus rarement pont d’Einstein-Rosen. De telles configurations ont beaucoup inspiré les auteurs de science-fiction (voir par exemple les références de la section Culture populaire) car elles proposent un moyen de voyager très rapidement sur de grandes distances, voire voyager dans le temps. En pratique, de telles configurations, si elles sont autorisées par la relativité générale, semblent totalement irréalisables dans un contexte astrophysique, car aucun processus connu ne semble permettre la formation de tels objets.
1 commentaire:
Bonjour,
Vous êtes cordialement invité à visiter mon blog.
Description : Mon Blog(fermaton.over-blog.com), présente le développement mathématique de la conscience humaine.
La Page No-9. THÉORÈME DU V4M
LA RELATIVITÉ DÉPASSÉ ?? ATTENTION ??
Cordialement
Clovis Simard
Enregistrer un commentaire